skip to main content

SciTech ConnectSciTech Connect

Title: A feasibility study: Selection of a personalized radiotherapy fractionation schedule using spatiotemporal optimization

Purpose: To investigate the impact of using spatiotemporal optimization, i.e., intensity-modulated spatial optimization followed by fractionation schedule optimization, to select the patient-specific fractionation schedule that maximizes the tumor biologically equivalent dose (BED) under dose constraints for multiple organs-at-risk (OARs). Methods: Spatiotemporal optimization was applied to a variety of lung tumors in a phantom geometry using a range of tumor sizes and locations. The optimal fractionation schedule for a patient using the linear-quadratic cell survival model depends on the tumor and OAR sensitivity to fraction size (α/β), the effective tumor doubling time (T{sub d}), and the size and location of tumor target relative to one or more OARs (dose distribution). The authors used a spatiotemporal optimization method to identify the optimal number of fractions N that maximizes the 3D tumor BED distribution for 16 lung phantom cases. The selection of the optimal fractionation schedule used equivalent (30-fraction) OAR constraints for the heart (D{sub mean} ≤ 45 Gy), lungs (D{sub mean} ≤ 20 Gy), cord (D{sub max} ≤ 45 Gy), esophagus (D{sub max} ≤ 63 Gy), and unspecified tissues (D{sub 05} ≤ 60 Gy). To assess plan quality, the authors compared the minimum, mean, maximum, and D{sub 95} of tumor BED, asmore » well as the equivalent uniform dose (EUD) for optimized plans to conventional intensity-modulated radiation therapy plans prescribing 60 Gy in 30 fractions. A sensitivity analysis was performed to assess the effects of T{sub d} (3–100 days), tumor lag-time (T{sub k} = 0–10 days), and the size of tumors on optimal fractionation schedule. Results: Using an α/β ratio of 10 Gy, the average values of tumor max, min, mean BED, and D{sub 95} were up to 19%, 21%, 20%, and 19% larger than those from conventional prescription, depending on T{sub d} and T{sub k} used. Tumor EUD was up to 17% larger than the conventional prescription. For fast proliferating tumors with T{sub d} less than 10 days, there was no significant increase in tumor BED but the treatment course could be shortened without a loss in tumor BED. The improvement in the tumor mean BED was more pronounced with smaller tumors (p-value = 0.08). Conclusions: Spatiotemporal optimization of patient plans has the potential to significantly improve local tumor control (larger BED/EUD) of patients with a favorable geometry, such as smaller tumors with larger distances between the tumor target and nearby OAR. In patients with a less favorable geometry and for fast growing tumors, plans optimized using spatiotemporal optimization and conventional (spatial-only) optimization are equivalent (negligible differences in tumor BED/EUD). However, spatiotemporal optimization yields shorter treatment courses than conventional spatial-only optimization. Personalized, spatiotemporal optimization of treatment schedules can increase patient convenience and help with the efficient allocation of clinical resources. Spatiotemporal optimization can also help identify a subset of patients that might benefit from nonconventional (large dose per fraction) treatments that are ineligible for the current practice of stereotactic body radiation therapy.« less
;  [1] ;  [2]
  1. Department of Radiation Oncology, University of Washington, Seattle, Washington 98195-6043 (United States)
  2. Departments of Radiation Oncology and Neurological Surgery, University of Washington, Seattle, Washington 98195-6043 (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 11; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States