skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4926733· OSTI ID:22479642
 [1]; ; ;  [2]
  1. Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)
  2. Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

OSTI ID:
22479642
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 33, Issue 5; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English