skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, characterisation, electrical and optical properties of copper borate compounds

Journal Article · · Materials Research Bulletin
;  [1];  [2];  [1]
  1. Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul (Turkey)
  2. Department of Physics, Faculty of Arts and Science, Yildiz Technical University, Istanbul (Turkey)

Highlights: • Cu(BO{sub 2}){sub 2} was synthesized at the form of with pdf number of “00-001-0472”. • Particle sizes were found between 162.72 and 56.44 nm and 195.76 and 75.73 nm at CuSNaH. • Reaction yields were 90.4 ± 0.84, 96.9 ± 0.78 and 78.9 ± 0.76% for CuST, CuSB and CuSNaH. • The resistivity of CuST, CuSB and CuSNaH are 1.10 × 10{sup 7}, 7.02 × 10{sup 6} and 8.62 × 10{sup 5} Ωm. • The optical energy gap was 3.76 eV. - Abstract: The hydrothermal synthesis of copper borate compounds [Cu(BO{sub 2}){sub 2}] was studied, and several parameters were found to affect the synthesis. Raw materials, including CuSO{sub 4}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O, NaOH and H{sub 3}BO{sub 3}, were used. Reaction temperatures and reaction times between 40 °C and 100 °C and 15 and 240 min, respectively, were used. The as-synthesised copper borate was analysed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The yields of the reactions were also calculated. Single-phase, nanoparticulate copper borate compounds (Cu(BO{sub 2}){sub 2}) possessing high XRD crystal scores were obtained; the reactions used to obtain these materials were highly efficient. Electrical resistivity and optical absorbance measurements were carried out on the compounds obtained from the highest yielding reactions. The results of this study showed that even using a reaction time of 15 min, copper borate formation was successfully achieved.

OSTI ID:
22475930
Journal Information:
Materials Research Bulletin, Vol. 70; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English