skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Annealing effect on the structural and magnetic properties of the CuAl{sub 0.6}Cr{sub 0.2}Fe{sub 1.2}O{sub 4} nano-ferrites

Journal Article · · Materials Research Bulletin
 [1];  [2];  [1]
  1. Physics Department, Faculty of Science, Tanta university, Tanta (Egypt)
  2. ME. Lab., Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

Graphical abstract: Mössbauer spectra of the as-prepared (AP) and annealed CuAl{sub 0.6}Cr{sub 0.2}Fe{sub 1.2}O{sub 4} samples. - Highlights: • As-prepared Cu–Al–Cr nano-ferrite samples were annealed at different temperatures T{sub A}. • Sample structure was transformed from cubic to tetragonal by JTE at 1000 °C. • Spontaneous and saturation magnetizations showed similar behavior against T{sub A}. • The deduced parameters showed dependence on T{sub A} and proved their affect by JTE. • Spontaneous magnetization proved dependence on crystallite size. - Abstract: Amounts of the as-synthesized CuAl{sub 0.6}Cr{sub 0.2}Fe{sub 1.2}O{sub 4} nanoparticles by the chemical co-precipitation method were annealed for 4 h at one of the temperatures T{sub A} = 300, 500, 600, 800 and 1000 °C for each. The techniques used for characterizing the samples were X-ray diffractions, infrared (IR) and Mössbauer spectroscopy and vibrating sample magnetometer. This study proved single-phase cubic structure of the samples annealed at T{sub A} ≤ 800 °C and tetragonal structure of the sample annealed at 1000 °C. The cubic-to-tetragonal structure transformation was attributed to the tetragonal distortion by Jahn–Teller effect (JTE) of Cu{sup 2+} ions. This study revealed that all deduced parameters were affected by JTE, whereas the crystallite size, lattice parameters, strain, threshold frequency, force constants, Debye temperature and stiffness constant were dependent on T{sub A}. IR absorption band positions and intensities were dependent on T{sub A} and proved the existence of Fe{sup 2+}, Fe{sup 4+} and Cr{sup 4+} ions in the crystal sublattices. The spontaneous and saturation magnetization and hyperfine magnetic field of the tetrahedral and octahedral sites were deduced and discussed as functions of T{sub A}.

OSTI ID:
22475824
Journal Information:
Materials Research Bulletin, Vol. 67; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English