skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stabilization of the Ti{sub 3}Co{sub 5}B{sub 2}-type structure for Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} through Si–Ti substitution

Journal Article · · Journal of Solid State Chemistry

We report a route for designing and synthesizing Ti{sub 3}Co{sub 5}B{sub 2}-type compounds in the Ti–Ru–B system by using chemical substitution of Si for Ti to decrease the d-electron-based antibonding interactions that it is argued would otherwise drive an instability in this structure for unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2}. Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} with x=0.75, 1.00 and 1.25 nominal compositions crystalizes in the Ti{sub 3}Co{sub 5}B{sub 2} structure type using arc melting methods, whereas at lower doping levels (x=0.0, 0.25 and 0.50) the more complex Zn{sub 11}Rh{sub 18}B{sub 8}-type structure is stable. Electronic structure calculations show that in hypothetical, unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2} with the Ti{sub 3}Co{sub 5}B{sub 2}-type structure, the antibonding interactions are strong around the Fermi level between the Ti and Ru in the structure that form tetragonal prisms. We propose that weakening these strong interactions through the partial substitution of isovalent Si for Ti leads to the observed stability of the Ti{sub 3}Co{sub 5}B{sub 2}-type structure for Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} for x≈1. - Graphical abstract: We present the designing and synthesizing of Ti{sub 3}Co{sub 5}B{sub 2}-type compounds in the Ti–Ru–B system by using chemical substitution of Si for Ti to decrease the d-electron-based antibonding interactions that would otherwise drive an instability in this structure for unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2}. Electronic structure calculations show that in hypothetical, unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2} with the Ti{sub 3}Co{sub 5}B{sub 2}-type structure, the antibonding interactions are strong around the Fermi level between the Ti and Ru in the structure that form tetragonal prisms. We propose that weakening these strong interactions through the partial substitution of isovalent Si for Ti leads to the observed stability of the Ti{sub 3}Co{sub 5}B{sub 2}-type structure for Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} for x≈1. - Highlights: • New quaternary phase Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} in Ti{sub 3}Co{sub 5}B{sub 2}-type structure is reported. • Chemical substitution of isovalent Si for Ti is used to stabilize the phase. • Decreasing the d-electron-based antibonding interactions is proved by calculation. • Physical properties of Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} are presented down to 0.4 K.

OSTI ID:
22475685
Journal Information:
Journal of Solid State Chemistry, Vol. 227; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English