skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cosmological constraints on the gravitational interactions of matter and dark matter

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1];  [1];  [1]
  1. Department of Physics, University of Wisconsin-Madison,Madison, WI 53706 (United States)

Although there is overwhelming evidence of dark matter from its gravitational interaction, we still do not know its precise gravitational interaction strength or whether it obeys the equivalence principle. Using the latest available cosmological data and working within the framework of ΛCDM, we first update the measurement of the multiplicative factor of cosmology-relevant Newton’s constant over the standard laboratory-based value and find that it is consistent with one. In general relativity, dark matter equivalence principle breaking can be mimicked by a long-range dark matter force mediated by an ultra light scalar field. Using the Planck three year data, we find that the dark matter “fifth-force” strength is constrained to be weaker than 10{sup −4} of the gravitational force. We also introduce a phenomenological, post-Newtonian two-fluid description to explicitly break the equivalence principle by introducing a difference between dark matter inertial and gravitational masses. Depending on the decoupling time of the dark matter and ordinary matter fluids, the ratio of the dark matter gravitational mass to inertial mass is constrained to be unity at the 10{sup −6} level.

Sponsoring Organization:
SCOAP3, CERN, Geneva (Switzerland)
OSTI ID:
22458442
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2015, Issue 10; Other Information: PUBLISHER-ID: JCAP10(2015)029; OAI: oai:repo.scoap3.org:12257; cc-by Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English

Similar Records

Cosmological constraints on the gravitational interactions of matter and dark matter
Journal Article · Thu Oct 01 00:00:00 EDT 2015 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22458442

Testing Lorentz invariance of dark matter
Journal Article · Mon Oct 01 00:00:00 EDT 2012 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22458442

Maximum entropy distributions of dark matter in ΛCDM cosmology
Journal Article · Tue Jul 04 00:00:00 EDT 2023 · Astronomy and Astrophysics · OSTI ID:22458442