skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigations on Bi{sub 25}FeO{sub 40} powders synthesized by hydrothermal and combustion-like processes

Journal Article · · Journal of Solid State Chemistry

The syntheses of phase-pure and stoichiometric iron sillenite (Bi{sub 25}FeO{sub 40}) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi{sub 25}FeO{sub 40} after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi{sub 25}FeO{sub 40} was calculated as 48(9) kJ mol{sup −1}. The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10{sup −6} m{sup 3} K mol{sup −1} for sample 1 and C=57.82×10{sup −6} m{sup 3} K mol{sup −1} for sample 2a resulting in magnetic moments of µ{sub mag}=5.95(8) µ{sub B} mol{sup −1} and µ{sub mag}=6.07(4) µ{sub B} mol{sup −1}. The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi{sub 25}FeO{sub 40} powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi{sub 25}FeO{sub 40} powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi{sub 25}FeO{sub 40} powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour.

OSTI ID:
22443384
Journal Information:
Journal of Solid State Chemistry, Vol. 217; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English