skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4897486· OSTI ID:22436581
;  [1]
  1. Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

We present a new approach to semi-global potential energy surface fitting that uses the least absolute shrinkage and selection operator (LASSO) constrained least squares procedure to exploit an extremely flexible form for the potential function, while at the same time controlling the risk of overfitting and avoiding the introduction of unphysical features such as divergences or high-frequency oscillations. Drawing from a massively redundant set of overlapping distributed multi-dimensional Gaussian functions of inter-atomic separations we build a compact full-dimensional surface for malonaldehyde, fit to explicitly correlated coupled cluster CCSD(T)(F12*) energies with a root mean square deviations accuracy of 0.3%–0.5% up to 25 000 cm{sup −1} above equilibrium. Importance-sampled diffusion Monte Carlo calculations predict zero point energies for malonaldehyde and its deuterated isotopologue of 14 715.4(2) and 13 997.9(2) cm{sup −1} and hydrogen transfer tunnelling splittings of 21.0(4) and 3.2(4) cm{sup −1}, respectively, which are in excellent agreement with the experimental values of 21.583 and 2.915(4) cm{sup −1}.

OSTI ID:
22436581
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English