skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First principles transport coefficients and reaction rates of Ar{sub 2}{sup +} ions in argon for cold plasma jet modeling

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4896613· OSTI ID:22436550
; ;  [1]; ;  [2];  [3]
  1. Laboratoire Plasma et Conversion d’Energie, LAPLACE and UMR5213 du CNRS, Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex (France)
  2. Center of Excellence IT4Innovations and Department of Applied Mathematics, VSB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic)
  3. Laboratoire de Chimie et de Physique Quantiques, IRSAMC and UMR5626 du CNRS, Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex (France)

Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar{sub 2}{sup +} mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar{sub 2}{sup +} mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar{sub 2}{sup +}/Ar collisions is also provided.

OSTI ID:
22436550
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English