skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of (Bi{sub 0.5}Ba{sub 0.5}) (Fe{sub 0.5}Ti{sub 0.5}) O{sub 3} ceramic

Journal Article · · Materials Research Bulletin
; ; ; ;  [1]
  1. Department of Physics, Multifunctional Materials Research Laboratory, Institute of Technical Education and Research, Siksha O Anusandahan University, Bhubaneswar 751030 (India)

Graphical abstract: Temperature variation of (a) dielectric constant (b) dielectric loss of the sample. - Highlights: • The high values of dielectric permittivity and low value of tangent loss. • It used for microwave applications. • The impedance and dielectric relaxation in the material is non exponential and non Debye-type. • Its ac conductivity obeys Jonscher universal power law. - Abstract: The polycrystalline sample of (Bi{sub 0.5}Ba{sub 0.5}) (Fe{sub 0.5}Ti{sub 0.5}) O{sub 3} (BF–BT) was prepared by a standard mixed oxide method. Analysis of room temperature XRD pattern and Raman/FTIR spectra of the compound does not exhibit any change in its crystal structure of BaTiO{sub 3} on addition of BiFeO{sub 3} in equal ratio. The surface morphology of the gold-plated sintered pellet sample recorded by SEM (scanning electron microscope) exhibits a uniform distribution of grains with less porosity. Detailed studies of nature and quantity of variation of dielectric constant, tangent loss, and polarization with temperature and frequency indicate the existence of ferroelectric phase transition at high-temperature. There is a low-temperature anti-ferromagnetic phase transition below 375 °C in the material. Detailed studies of electrical properties (impedance, modulus, etc.) of the material confirmed a strong correlation between micro-structure and properties.

OSTI ID:
22420790
Journal Information:
Materials Research Bulletin, Vol. 61; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English