skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preparation and characterization of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts for biodiesel production

Journal Article · · Materials Research Bulletin
 [1];  [1];  [2]
  1. Faculty of Chemistry, Razi University, P. O. Box: 6714967346, Kermanshah (Iran, Islamic Republic of)
  2. Department of Chemistry, Payam Noor University, Tehran (Iran, Islamic Republic of)

Graphical abstract: In this study, a series of magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared and tested for biodiesel production. The best operational conditions were CH3OH/oil = 12/1 at 60 °C with mechanical stirring, the biodiesel yield reaches to 81% in 4 h. Also notably, recovery of the catalyst can be achieved easily with the help of an external magnet with no need for expensive ultracentrifugation. - Highlights: • Effects of preparation conditions for biodiesel production were studied. • The CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} catalyst is efficient catalyst for biodiesel production. • The reaction conditions were found methanol/oil = 12/1, T = 60 °C. - Abstract: The magnetic CsH{sub 2}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} nanocatalysts were prepared via combination of sol–gel and impregnation methods. The effects of different H{sub 3}PW{sub 12}O{sub 40}/(Fe–SiO{sub 2}) weight percentage, loading of Cs as a promotor and calcination conditions on the catalytic performance has been studied. It was found that the catalyst with H{sub 3}PW{sub 12}O{sub 40}/Fe–SiO{sub 2} = 4 wt.% and Cs = 2 wt.% is an optimal catalyst for biodiesel production. The activity of optimal catalyst was studied in different operational conditions. The best operational conditions were CH{sub 3}OH/oil = 12/1 at 60 °C with mechanical stirring rate of 500 rpm and the biodiesel yield reaches to 81% in 4 h. Characterization of catalysts was carried out by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), N{sub 2} adsorption–desorption measurements methods, Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)

OSTI ID:
22420687
Journal Information:
Materials Research Bulletin, Vol. 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English