skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoluminescence and electrical characterization of unfilled tetragonal tungsten bronze Ba{sub 4}La{sub 1−x}Eu{sub x}TiNb{sub 9}O{sub 30}

Journal Article · · Materials Research Bulletin
 [1];  [2];  [1]
  1. College of Science, Civil Aviation University of China, Tianjin 300300 (China)
  2. School of Electronics and Information Engineering, Tianjin Polytechnics University, Tianjin 300160 (China)

Graphical abstract: PL spectra of the unfilled TTB structure BLTN: Eu{sup 3+}x samples (x = 0.00, 0.25, 0.50, 0.75, and 1.00) excited by 399 nm. The inset is a schematic diagram of the unfilled TTB structure. - Highlights: • Unfilled TTB structure BLTN: Eu{sup 3+}x ceramics have been synthesized. • Photoluminescenct properties of the BLTN: Eu{sup 3+}x ceramics have been first reported. • Bright red emission excited by NUV light has been observed at room temperature. • Obvious variations of dielectric characteristics have been confirmed. • Relaxor-like ferroelectric phase transitions have been detected. - Abstract: Unfilled tetragonal tungsten bronze (TTB) structure Ba{sub 4}LaTiNb{sub 9}O{sub 30} doped by Eu{sup 3+} (BLTN: Eu{sup 3+}x) with different x have been prepared, and their structural, photoluminescence, dielectric, and ferroelectric properties are carefully investigated in this work. Bright red emission, originating from {sup 5}D{sub 0} → {sup 7}F{sub 1} and {sup 5}D{sub 0} → {sup 7}F{sub 2} transitions of Eu{sup 3+} ions, has been observed by naked eyes at room temperature under near ultraviolet (NUV) light excitation. Optimized emission intensity is obtained when x = 1.00 for present unfilled TTB-type BLTN: Eu{sup 3+}x samples. Furthermore, with increasing x, the dielectric and ferroelectric characteristics of the unfilled TTB-type BLTN: Eu{sup 3+}x samples also display remarkable variation. When x ≥ 0.50 relaxor-like ferroelectric phase transitions are detected above room temperature, it is believed that unfilled TTB-type BLTN: Eu{sup 3+}x = 1.00 involving bright photoluminescence and enhanced ferroelectric properties may act as a potentially multifunctional optical-electro material.

OSTI ID:
22420658
Journal Information:
Materials Research Bulletin, Vol. 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English