skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

Journal Article · · Materials Research Bulletin

Graphical abstract: TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO{sub 2}. • TiO{sub 2}/Bi{sub 2}(BDC){sub 3}/BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO{sub 2}. With increasing the amount of TiO{sub 2}, the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO{sub 2}/Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The current study not only develops a new methodology to synthesize ultrathin nanosheets but also provides a novel strategy to design composite photocatalysts with high reaction activity and good selectivity.

OSTI ID:
22420654
Journal Information:
Materials Research Bulletin, Vol. 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English