skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling orbital-selective Kondo effects in a single molecule through coordination chemistry

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4890654· OSTI ID:22420000
; ;  [1]; ;  [2]
  1. Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)
  2. RIKEN, 2-1 Hirosawa, Saitama 351-0198 (Japan)

Iron(II) phthalocyanine (FePc) molecule causes novel Kondo effects derived from the unique electronic structure of multi-spins and multi-orbitals when attached to Au(111). Two unpaired electrons in the d{sub z}{sup 2} and the degenerate dπ orbitals are screened stepwise, resulting in spin and spin+orbital Kondo effects, respectively. We investigated the impact on the Kondo effects of the coordination of CO and NO molecules to the Fe{sup 2+} ion as chemical stimuli by using scanning tunneling microscopy (STM) and density functional theory calculations. The impacts of the two diatomic molecules are different from each other as a result of the different electronic configurations. The coordination of CO converts the spin state from triplet to singlet, and then the Kondo effects completely disappear. In contrast, an unpaired electron survives in the molecular orbital composed of Fe d{sub z}{sup 2} and NO 5σ and 2π* orbitals for the coordination of NO, causing a sharp Kondo resonance. The isotropic magnetic response of the peak indicates the origin is the spin Kondo effect. The diatomic molecules attached to the Fe{sup 2+} ion were easily detached by applying a pulsed voltage at the STM junction. These results demonstrate that the single molecule chemistry enables us to switch and control the spin and the many-body quantum states reversibly.

OSTI ID:
22420000
Journal Information:
Journal of Chemical Physics, Vol. 141, Issue 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English