Journal Article: Use of density functional theory method to calculate structures of neutral carbon clusters C{sub n} (3 ≤ n ≤ 24) and study their variability of structural forms

Title: Use of density functional theory method to calculate structures of neutral carbon clusters C{sub n} (3 ≤ n ≤ 24) and study their variability of structural forms

In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposedmore » modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C{sub 60} and C{sub 72} against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size range C{sub 3}-C{sub 24} studying their topological transitions. An effort was also made to compare our MBH/DFTB and its re-optimized results carried out by full density functional theory (DFT) calculations with some early DFT-based studies.« less

Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan (China)

Publication Date:

OSTI Identifier:

22416185

Resource Type:

Journal Article

Resource Relation:

Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 8; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)