skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of density functional theory method to calculate structures of neutral carbon clusters C{sub n} (3 ≤ n ≤ 24) and study their variability of structural forms

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4908561· OSTI ID:22416185

In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster’s total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster’s lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C{sub 60} and C{sub 72} against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster’s energy minimum, before employing it to investigate carbon clusters in the size range C{sub 3}-C{sub 24} studying their topological transitions. An effort was also made to compare our MBH/DFTB and its re-optimized results carried out by full density functional theory (DFT) calculations with some early DFT-based studies.

OSTI ID:
22416185
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 8; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English