skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wetting of prototypical one- and two-dimensional systems: Thermodynamics and density functional theory

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4905605· OSTI ID:22416026
;  [1];  [1]
  1. Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

Consider a two-dimensional capped capillary pore formed by capping two parallel planar walls with a third wall orthogonal to the two planar walls. This system reduces to a slit pore sufficiently far from the capping wall and to a single planar wall when the side walls are far apart. Not surprisingly, wetting of capped capillaries is related to wetting of slit pores and planar walls. For example, the wetting temperature of the capped capillary provides the boundary between first-order and continuous transitions to condensation. We present a numerical investigation of adsorption in capped capillaries of mesoscopic widths based on density functional theory. The fluid-fluid and fluid-substrate interactions are given by the pairwise Lennard-Jones potential. We also perform a parametric study of wetting in capped capillaries by a liquid phase by varying the applied chemical potential, temperature, and pore width. This allows us to construct surface phase diagrams and investigate the complicated interplay of wetting mechanisms specific to each system, in particular, the dependence of capillary wetting temperature on the pore width.

OSTI ID:
22416026
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 3; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English