skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Excited state reaction dynamics of Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O studied by a crossed-beam velocity map imaging technique

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4918636· OSTI ID:22415676
;  [1]
  1. Graduate School of Material Science, University of Hyogo, 3-2-1 Kohto, Kamigori, Hyogo (Japan)

Oxidation reactions of the gas-phase titanium atom in its excited state with oxygen molecule, Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O, were studied by a crossed-beam velocity map imaging technique at 14.3 kJ/mol of collision energy. Metastable excited Ti, Ti(a{sup 5}F{sub J}), was generated by an optical pumping method and the reaction products were detected by single photon-ionization followed by a time-of-flight mass analysis and a two dimensional detection. Three wavelengths were selected to ionize electronically excited TiO{sup ∗}, TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ). Time sliced images were measured, and angular and speed distributions of TiO{sup ∗} were determined. In all three ionization wavelengths, the angular distributions showed a forward-backward symmetry with low intensity at the sideway direction. The speed distributions were represented by the distributions based on the statistical energy partition into products. These results suggested that the reaction of Ti(a{sup 5}F{sub J}) to form TiO(B) and TiO(C) proceeds via a long-lived intermediate and confirmed that the mechanism proposed by the previous chemiluminescence study.

OSTI ID:
22415676
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English