skip to main content

SciTech ConnectSciTech Connect

Title: Dose ratio proton radiography using the proximal side of the Bragg peak

Purpose: In recent years, there has been a movement toward single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp falloff. The authors investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak, the authors generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, the authors were able to generate lookup graphs of the range on the proximal side of the Bragg peak that one couldmore » reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these lookup graphs, the authors investigated the applicability of the technique for a range of patient treatment sites. The authors validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation, it was found that, for a pediatric brain, it is possible to use the technique to image a region with a square field equivalent size of 7.6 cm{sup 2}, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ = 1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, the authors have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains.« less
; ;  [1] ;  [2] ; ;  [3]
  1. Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)
  2. Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)
  3. Ion Beam Applications (IBA), 3 Chemin du Cyclotron, Louvain la Neuve B-1348 (Belgium)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 4; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States