skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring electrical conductivity anomalies across the martensite transition in Fe{sub 7}Pd{sub 3} ferromagnetic shape memory alloys: Experiments and ab-initio calculations

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4914004· OSTI ID:22412750

Conductivity in Fe{sub 7}Pd{sub 3} is characterized by an anomalous increase when traversing the face–centered–cubic (fcc) austenite to face–centered–tetragonal (fct) martensite transition, contrary to most other conventional and ferromagnetic shape memory alloys. Experiments on molecular– beam–epitaxy–grown single crystals indicate a resistivity change of ≈20% during the transformation on top of a quadratic temperature dependence reaching up to room temperature. The physical foundations of residual resistivity changes along the full Bain path are addressed by a Kubo– Greenwood approach within the framework of density functional theory. To do so, a concept to reliably extract the DC conductivities is proposed that yields reproducible results consistent with experiments. Finding that conductivity peaks in the fct phase, we identify a large density of states paired with high velocities at the Fermi level in the majority spin sub–bands in presence of minimum s–d electron scattering as underlying physical origin.

OSTI ID:
22412750
Journal Information:
Applied Physics Letters, Vol. 106, Issue 9; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English