skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication and characterization of spin injector using a high-quality B2-ordered-Co{sub 2}FeSi{sub 0.5}Al{sub 0.5}/MgO/Si(100) tunnel contact

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4918567· OSTI ID:22410074
; ; ;  [1];  [2]
  1. Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)
  2. Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan)

We successfully fabricate a (100)-orientated B2-type-Co{sub 2}FeSi{sub 0.5}Al{sub 0.5} (CFSA)/MgO/Si(100) tunnel contact that is promising for an efficient spin injector for Si channels. The MgO barrier is formed by radical oxidation of an Mg thin film deposited on a Si(100) surface at room temperature and successive radical oxygen annealing at 400 °C. The CFSA electrode is grown on the MgO barrier at 400 °C by ultrahigh-vacuum molecular beam deposition, and it exhibits a (100)-orientated columnar polycrystalline structure with a high degree (63%) of B2-order. The MgO barrier near the interface of the CFSA/MgO junction is crystallized with the (100) orientation, i.e., the spin filter effect due to the MgO barrier could be expected for this junction. A three-terminal Si-channel spin-accumulation device with a CFSA/MgO/Si(100) spin injector is fabricated, and the Hanle effect of accumulated spin polarized electrons injected from this contact to the Si channel is observed.

OSTI ID:
22410074
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English