skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exchange interaction energy in magnetic recording simulation

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4915352· OSTI ID:22410061
; ; ; ;  [1];  [2]
  1. HGST, A Western Digital Company, 2880 Kohzu, Odawara, Kanagawa 256-8510 (Japan)
  2. HGST, A Western Digital Company, San Jose, California 95119 (United States)

Based on a phenomenological theory, micromagnetic simulations and experiments are used to evaluate an improved function for the exchange interaction between magnetic particles in perpendicular recording media. Assuming diluted spin layers in the particle boundary and a gradual rather than abrupt rotation of magnetization between grain cores, the exchange energy is better described by an even power series of θ, rather than a cosine function. The conventional cosine function does not have a restoring torque near θ = π and adjacent grains tend to align strictly antiparallel. In contrast, using a power series of θ, adjacent grains tend to align at a small angle away from θ = π. This gives rise to a small in-plane magnetization component and therefore a distinct peak in in-plane susceptibility is observed around H = 0. From magnetization measurements of a real medium, a peak is observed around H = 0, which matches with an assumption of 2 or 3 spin layers. In some situations, the exchange interaction between discretized cells for numerical calculation is better described by a power series rather than a cosine function.

OSTI ID:
22410061
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

TU-EF-BRA-00: MR Basics I
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:22410061

TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:22410061

TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:22410061