skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of copper substitution on the magnetic and magnetocaloric properties of NiMnInB alloys

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4916809· OSTI ID:22409930
; ; ; ;  [1]; ;  [2]
  1. Department of Physics, Southern Illinois University, Carbondale, Illinois 62901 (United States)
  2. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

The structural, magnetocaloric, and thermomagnetic properties of Ni{sub 50.51}Mn{sub 34.34−x}Cu{sub x}In{sub 14.14}B{sub 1.01} with x = (0, 1.26, and 2.02) have been studied using room-temperature x-ray diffraction, differential scanning calorimetry (DSC), and magnetization measurements. The partial substitution of Cu for Mn was found to shift both the martensitic transition temperature (T{sub M}) and the Curie temperature (T{sub C}) to lower temperatures. The values of the latent heat (L = 9.4 J/g) and corresponding magnetic (ΔS{sub M}) and total entropy (ΔS{sub T}) changes (ΔS{sub M} = 22.60 J/kg K for ΔH = 5 T and ΔS{sub T} = 29.7 J/kg K) have been evaluated using magnetic and DSC measurements, respectively, for the sample with x = 1.26. Large negative values of ΔS{sub M} of −7.27 and −5.98 J/kg K for ΔH = 5 T in the vicinity of T{sub C} were observed for x = 1.26 and 2.02, respectively. It has been found that the application of hydrostatic pressure changes the magnetic ground state of the martensitic phase and increases the temperature stability of the martensitic phase. The roles of the magnetic and structural changes on the transition temperatures are discussed.

OSTI ID:
22409930
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English