skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimization of permanent magnetic properties in melt spun Co{sub 82−x}Hf{sub 12+x}B{sub 6} (x = 0–4) nanocomposites

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4913896· OSTI ID:22409922
 [1]; ; ;  [2]
  1. Department of Applied Physics, Tunghai University, Taichung 407, Taiwan (China)
  2. Superrite Electronics Co. Ltd., Taipei 111, Taiwan (China)

Magnetic properties of melt spun Co{sub 82−x}Hf{sub 12+x}B{sub 6} ribbons made with various wheel speeds have been studied. The ribbons with x = 0–1 are not easy to crystallize and thus display soft magnetic behavior even at wheel speed of 10 m/s. In contrast, the ribbons with x = 1.5–4 at optimized wheel speed exhibit good permanent magnetic properties of B{sub r} = 0.41–0.59 T, {sub i}H{sub c} = 120–400 kA/m, and (BH){sub max} = 10.6–48.1 kJ/m{sup 3}. The optimal magnetic properties of B{sub r} = 0.59 T, {sub i}H{sub c} = 384 kA/m, and (BH){sub max} = 48.1 kJ/m{sup 3} are achieved for Co{sub 80}Hf{sub 14}B{sub 6} ribbons at wheel speed of 30 m/s. X-ray diffraction, thermo-magnetic analysis, and transmission electron microscopy results show that good hard magnetic properties of Co{sub 82−x}Hf{sub 12+x}B{sub 6} ribbons (x = 2–4) are originated from the Co{sub 11}Hf{sub 2} phase well coupled with the Co phase. The change of magnetic properties for Co{sub 82−x}Hf{sub 12+x}B{sub 6} ribbons spun at various wheel speeds is correlated to microstructure and phase constitution. The strong exchange-coupling effect between magnetic grains for the ribbons with x = 2–3 at wheel speed = 30 m/s leads to remarkable permanent magnetic properties. The presented results suggest that the optimized Co{sub 82−x}Hf{sub 12+x}B{sub 6} (x = 2–3) ribbons are much suitable than others (x = 0–1.5 and 4) for making rare earth and Pt-free magnets.

OSTI ID:
22409922
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English