skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying three dimensional reconnection in fragmented current layers

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4918335· OSTI ID:22408301
;  [1]
  1. Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States)

There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. It is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E{sub ||} through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify.

OSTI ID:
22408301
Journal Information:
Physics of Plasmas, Vol. 22, Issue 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English