skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of the mounting membrane on shape in inertial confinement fusion implosions

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4907179· OSTI ID:22408120
; ; ; ; ; ; ; ; ; ; ; ; ;  [1]
  1. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or “tent” thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P{sub 2} and P{sub 4}) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P{sub 4} mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P{sub 4} and core P{sub 4}, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature.

OSTI ID:
22408120
Journal Information:
Physics of Plasmas, Vol. 22, Issue 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English