Title: Ambiguities and subtleties in fermion mass terms in practical quantum field theory

This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature—specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may bemore » mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models. - Highlights: • Structure of fermion mass terms in practical quantum field theory is reviewed. • Important subtleties and ambiguities on the subject are clarified. • A mass eigenstate Dirac fermion and two degenerated Majorana ones are equivalent. • The conventional meaning of such terminology for neutrinos is critically discussed.« less

Journal Name: Annals of Physics (New York); Journal Volume: 348; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)

Country of Publication:

United States

Language:

English

Subject:

71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EIGENSTATES; EQUATIONS OF MOTION; FERMIONS; HIGH ENERGY PHYSICS; MASS; NEUTRINOS; QUANTUM FIELD THEORY; REVIEWS; SPINORS; STANDARD MODEL