Title: Homoclinic tangle of the ideal separatrix in the DIII-D tokamak from (30, 10) + (40, 10) perturbation

Trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian system. The perturbed separatrix in a divertor tokamak is radically different from the unperturbed one. This is because magnetic asymmetries cause the separatrix to form extremely complicated structures called homoclinic tangles. The shape of flux surfaces in the edge region of divertor tokamaks such as the DIII (J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)) is fundamentally different from near-circular. Recently, a new method is developed to calculate the homoclinic tangle and lobes of the separatrix of divertor tokamaks in physical space (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014)). This method is based on three elements: preservation of the two invariants—symplectic and topological neighborhood—and a new set of canonical coordinates called the natural canonical coordinates. The very complicated shape of edge surfaces can be represented very accurately and very realistically in these new coordinates (A. Punjabi and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)). A symplectic map in the new coordinates can advance the separatrix manifold forward and backward in time. Every time the two manifolds meet in a fixed poloidal plane, theymore » intersect and form homoclinic tangle to preserve the two invariants. The new coordinates can be mapped to physical space and the dynamical evolution of the homoclinic tangle can be seen and pictured in physical space. Here, the new method is applied to the DIII-D tokamak to study the basic features of the homoclinic tangle of the unperturbed separatrix from two Fourier components, which represent the peeling-ballooning modes of equal amplitude and no radial dependence, and the results are analyzed. Homoclinic tangle has a very complicated structure and becomes extremely complicated for as the lines take more toroidal turns, especially near the X-point. Homoclinic tangle is the most complicated near the X-point and forms the largest lobes there. On average, the field lines cover a distance of about 9 m per turn. Poloidal rotation of the lines has large gradients in the poloidal direction. The average normal displacement of the lines on the separatrix varies from 5 mm to 7 cm. Average outward displacement of the lines is considerably larger than the inward displacement; however, on the average more lines are displaced inside than outside of the separatrix. The field line diffusion normal to the separatrix has extremely wide variation and very large poloidal gradients. Half of all the lines are lost in less than 6 turns. Complicated electric potentials will be required to maintain the neutrality of the plasma, and the E × B drifts from these fields can modify plasma confinement and influence the edge physics (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014))« less

Hampton University, Hampton, Virginia 23668 (United States)

Publication Date:

OSTI Identifier:

22403361

Resource Type:

Journal Article

Resource Relation:

Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)

Country of Publication:

United States

Language:

English

Subject:

70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CANONICAL DIMENSION; DEGREES OF FREEDOM; DIVERTORS; DOUBLET-3 DEVICE; HAMILTONIANS; PERTURBATION THEORY; PLASMA; PLASMA CONFINEMENT