skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermoelectric properties of Sn- and Pb-doped Tl{sub 9}BiTe{sub 6} and Tl{sub 9}SbTe{sub 6}

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4901460· OSTI ID:22402623
; ; ;  [1]
  1. Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

A variety of substitutions in Tl{sub 9}BiTe{sub 6} and Tl{sub 9}SbTe{sub 6} with Sn and Pb, amounting to 14 different samples, were performed by melting the stoichiometric amounts of elements at 923 K, followed by slow cooling. The pulverized powders were sintered using the hot-pressing technique. All samples were of single phase according to the powder X-ray diffraction patterns. Thermoelectric property measurements were performed to investigate the effects of Sn- and Pb-doping on the electrical conductivity, Seebeck coefficient, and thermal conductivity. Increasing the concentration of the dopants caused increases in electrical and thermal conductivity, while decreasing the Seebeck coefficient. Tl{sub 9}Bi{sub 0.90}Pb{sub 0.10}Te{sub 6} and Tl{sub 9}Bi{sub 0.85}Pb{sub 0.15}Te{sub 6} exhibited the highest power factor. The changes in lattice thermal conductivity were minor and did not follow a clear trend. Competitive ZT values were obtained for Tl{sub 9}Bi{sub 0.95}Sn{sub 0.05}Te{sub 6}, Tl{sub 9}Bi{sub 0.95}Pb{sub 0.05}Te{sub 6}, Tl{sub 9}Sb{sub 0.97}Sn{sub 0.03}Te{sub 6}, and Tl{sub 9}Sb{sub 0.95}Pb{sub 0.05}Te{sub 6}, namely 0.95, 0.94, 0.83, and 0.71 around 500 K, respectively. Higher dopant concentrations led to lower ZT values.

OSTI ID:
22402623
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English