skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible modulation of electric transport properties by oxygen absorption and releasing on Nb:SrTiO{sub 3} surface

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4901346· OSTI ID:22402591

Pt Schottky contacts on (001)-orientated Nb-doped SrTiO{sub 3} (NSTO) in both ambient air and vacuum were investigated by the conductive atomic force microscope. The co-existed TiO{sub 2} and SrO termination layers were identified on the terrace-structured NSTO surface, where the former possessed a higher forward current than the latter. In ambient air, the barrier height of Pt/NSTO Schottky junction exhibited periodical variation with cyclic terrace plane and step sites, whereas it became homogeneous in ambient vacuum. We suggested that the oxygen absorption and releasing of surface dangling bonds were the origin for reversible changes in transport properties, which indicates a feasible approach for the surface modulation and band structure tailoring of NSTO based heterojunctions.

OSTI ID:
22402591
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 17; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English