skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese

Journal Article · · Journal of Catalysis
; ;  [1]
  1. California Institute of Technology, Pasadena, CA (United States)

The catalytic properties of iron- and manganese-promoted sulfated zirconia (SFMZ) for the isomerization of n-butane to isobutane are investigated using various catalyst pretreatments and reaction conditions. The n-butane isomerization reactivity at 30{degrees}C is effected by calcination of the catalyst at 650{degrees}C in helium and vacuum treatment at room temperature indicating that superacidity is not likely to be responsible for activity. In addition, SFMZ samples exposed to dry air at over 450{degrees}C are more active than those calcined in helium at a reaction temperature of 30{degrees}C (n-butane conversions of 18.7% vs 0.4%) suggesting the presence of an active site involving a metal {open_quotes}oxy{close_quotes} species. The oxy species is capable of reacting CO to CO{sub 2} at room temperature and is present at a number density of 10-15 {mu}mol/g. At a reaction temperature of 100{degrees}C, SFMZ catalysts calcined in air then activated in helium show similar reactivities to those activated in air up to a preheating temperature of 450{degrees}C; above 450{degrees}C the metal oxy species is formed and provides additional activity (n-butane conversions of 37.1% in air vs 15.4% in He for calcinations at 650{degrees}C). The nature of the active sites on SFMZ are investigated using temperature-programmed desorption of substituted benzenes. The liberation of CO{sub 2} and SO{sub 2} in the benzene TPD profile of SFMZ is attributed to the oxidation of benzene at the redox-active metal sites, resulting in the subsequent decomposition of the reduced iron (II) sulfate. Data from the TPD studies do not suggest the presence of superacidity on SFMZ that could contribute to the low-temperature n-butane isomerization activity. Instead, a bifunctional mechanism that involves a combination of a redox-active metal site and an acid site in close proximity is proposed. 62 refs., 17 figs., 4 tabs.

OSTI ID:
223992
Journal Information:
Journal of Catalysis, Vol. 158, Issue 1; Other Information: PBD: Jan 1996
Country of Publication:
United States
Language:
English

Similar Records

Effect of Pt and H{sub 2} on n-butane isomerization over Fe and Mn promoted sulfated zirconia
Journal Article · Sat Jun 01 00:00:00 EDT 1996 · Journal of Catalysis · OSTI ID:223992

Cracking of n-butane catalyzed by iron- and maganese-promoted sulfated zirconia
Journal Article · Mon May 01 00:00:00 EDT 1995 · Journal of Catalysis · OSTI ID:223992

Superacid and catalytic properties of sulfated zirconia
Journal Article · Fri Oct 01 00:00:00 EDT 1993 · Journal of Catalysis; (United States) · OSTI ID:223992