skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The detrimental effect of flux-induced boron alloying in Pd–Si–Cu bulk metallic glasses

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4905174· OSTI ID:22395640

We report on advanced insights into the fluxing of Pd–Si–Cu bulk metallic glasses. Flux-induced boron alloying and trapping of oxides are found to be associated with the employed boron oxide fluxing agent, and both influence the attainable glass-forming ability (GFA) in opposite ways. Incorporated boron strongly deteriorates the GFA due to a rising liquidus temperature, while the oxygen reduction improves it. Thus, proper fine-tuning of the fluxing time and overheating characteristics leads to an enhancement of GFA. In the current case, the critical diameter of Pd{sub 77.5}Si{sub 16.5}Cu{sub 6} bulk metallic glasses can be increased to 15 mm, as compared to 3 mm in the unfluxed case. Based on these results, we illustrate that the development of further fluxing agents is crucial for enhancement of the key properties of bulk metallic glasses.

OSTI ID:
22395640
Journal Information:
Applied Physics Letters, Vol. 106, Issue 1; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English