skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatic force microscopy and electrical isolation of etched few-layer graphene nano-domains

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4904709· OSTI ID:22395551

Nanostructured bi-layer graphene samples formed through catalytic etching are investigated with electrostatic force microscopy. The measurements and supporting computations show a variation in the microscopy signal for different nano-domains that are indicative of changes in capacitive coupling related to their small sizes. Abrupt capacitance variations detected across etch tracks indicates that the nano-domains have strong electrical isolation between them. Comparison of the measurements to a resistor-capacitor model indicates that the resistance between two bi-layer graphene regions separated by an approximately 10 nm wide etch track is greater than about 1×10{sup 12} Ω with a corresponding gap resistivity greater than about 3×10{sup 14} Ω⋅nm. This extremely large gap resistivity suggests that catalytic etch tracks within few-layer graphene samples are sufficient for providing electrical isolation between separate nano-domains that could permit their use in constructing atomically thin nanogap electrodes, interconnects, and nanoribbons.

OSTI ID:
22395551
Journal Information:
Applied Physics Letters, Vol. 105, Issue 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English