skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4921553· OSTI ID:22392500
;  [1]
  1. Department of Mechanical Engineering and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States)

We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

OSTI ID:
22392500
Journal Information:
Review of Scientific Instruments, Vol. 86, Issue 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English

Similar Records

High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments
Journal Article · Tue May 15 00:00:00 EDT 2012 · Review of Scientific Instruments · OSTI ID:22392500

Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads
Journal Article · Wed Apr 15 00:00:00 EDT 2015 · Review of Scientific Instruments · OSTI ID:22392500

Multiplexed single-molecule measurements with magnetic tweezers
Journal Article · Mon Sep 15 00:00:00 EDT 2008 · Review of Scientific Instruments · OSTI ID:22392500