skip to main content

SciTech ConnectSciTech Connect

Title: Chamber wall interactions with HBr/Cl{sub 2}/O{sub 2} plasmas

The authors have studied the interaction of HBr/Cl{sub 2}/O{sub 2} inductively coupled plasmas with reactor chamber wall deposits, with and without Si etching, using the “spinning wall” technique. The spinning wall is part of the reactor chamber walls, allowing near-real-time analysis of the composition of surface layers via Auger electron spectrometry and determination of species desorbing off the walls by mass spectrometry. In HBr plasmas with no bias voltage on the Si substrate, and hence no Si etching, HBr is ∼30% dissociated, and H{sub 2} and Br{sub 2} form in the plasma. Layers deposited on the reactor chamber contained little if any Br under these conditions. Adding O{sub 2} to an HBr plasma leads to formation of H{sub 2}O and increased Br{sub 2} (compared to a pure HBr plasma) products that desorb from the spinning wall. H{sub 2}O has a very long residence time on the surface. With bias voltage applied to the Si substrate in an HBr plasma, mass spectrometer signals are prominent for SiBr and SiBr{sub 3}, and weaker for SiBr{sub 2}, SiBr{sub 4}, Si{sub 2}Br{sub 4}, Si{sub 2}Br{sub 5}, and Si{sub 2}OBr{sub 5}. Under these conditions, a SiO{sub x}Br{sub y} layer deposits on the spinning wall. Addingmore » 20% O{sub 2} to HBr stops etching and eliminates Br from the surface layer, indicating that Br on the reactor walls is a result of SiBr{sub x} impingement and not from bromination by impinging Br. With HBr/Cl{sub 2} plasmas and no bias on the stage, a SiO{sub x}Cl{sub y} layer deposits, and no Br is detected. HCl, BrCl, and Br{sub 2} were detected in the line-of-sight leak, around the spinning wall, of a HBr/Cl{sub 2} (1:1) gas mixture in the absence of a plasma. Residence time analysis of species in the chamber and a change in the product distribution with a change in the composition of the layer deposited on the chamber wall suggest that reactions forming these products in the absence of a plasma occur on the reactor walls. With a plasma and bias on the Si substrate, both Br and Cl incorporate in the layer, and a rich spectrum with numerous SiCl{sub x}Br{sub y} peaks was observed up to at least 500 amu. The spectrum does not change with the addition of 6% O{sub 2}. Adding 20% O{sub 2} suppresses Br adsorption, but Cl still adsorbs. In 40% O{sub 2}/HBr/Cl{sub 2} plasmas with stage bias, Cl adsorption also ceases and no etching products are observed in the mass spectrum.« less
; ;  [1]
  1. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 33; Journal Issue: 4; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States