skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solutal separation in a binary nanofluid due to thermodiffusion

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4912331· OSTI ID:22391041
; ;  [1]
  1. Department of Mechanical and Industrial Engineering, Ryerson University, Toronto (Canada)

Transport phenomena in porous media have received considerable attention due to an increasing interest in geothermal processes, chemical catalytic reactors, waste storage (especially geological or ocean storage of carbon dioxide), etc. Among others, oil industry has shown an increasing interest in studying diffusion phenomenon. Nanofluid is a term used to describe the suspension of low concentration of metallic and non-metallic nanoparticles in a base fluid. The size of a nanoparticle ranges from 10 to 100nm, and the conventional fluids used are water, ethylene glycol (C{sub 2}H{sub 6}O{sub 2}) or engine oil. Various studies have proven that nanoparticles improve the heat transfer of a base fluid. However, using various nanofluids it has been shown that the results could vary depending on different initial concentrations. The main objective of this paper is to study the diffusion and the thermodiffusion effect in a nanofluid for different fluid/porous media configurations. In this configuration, a liquid layer surrounds a porous layer. The full Brinkman equation coupled with the heat and mass transfer equations have been solved numerically for the porous layer using the finite element technique. The full Navier stokes equation coupled with heat and mass transfer equations have been solved for the liquid layer using the finite element method. A constraint between the liquid and porous layer has been applied to ensure heat flow and mass transfer continuity is maintained. A square cavity filled with hydrocarbon nanofluid of a mixture of fullerene-toluene with varying concentration of fullerene has been subject to different heating conditions. The entire cavity has been considered to be fully wetted with nanofluid. Results have confirmed that in the presence of a nanofluid a heat transfer enhancement is present up to certain initial concentration of the fullerene. The heat convection coefficient has been found to be 16% higher when a nanofluid is used as the working fluid.

OSTI ID:
22391041
Journal Information:
AIP Conference Proceedings, Vol. 1648, Issue 1; Conference: ICNAAM-2014: International Conference on Numerical Analysis and Applied Mathematics 2014, Rhodes (Greece), 22-28 Sep 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English