skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of boron detection limit using the in-air PIGE set-up at LAMFI-USP

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4901776· OSTI ID:22390461
; ; ; ;  [1]
  1. Institute of Physics, University of São Paulo, SP (Brazil)

The quantification of small amounts of boron in materials is of extreme importance in different areas of materials science. Boron is an important contaminant and also a silicon dopant in the semiconductor industry. Boron is also extensively used in nuclear power plants, either for neutron shielding or for safety control and boron is an essential nutrient for life, either vegetable or animal. The production of silicon solar cells, by refining metallurgical-grade silicon (MG-Si) requires the control and reduction of several silicon contaminants to very low concentration levels. Boron is one of the contaminants of solar-grade silicon (SG-Si) that must be controlled and quantified at sub-ppm levels. In the metallurgical purification, boron quantification is usually made by Inductive Coupled Plasma Mass Spectrometry, (ICP-MS) but the results need to be verified by an independent analytical method. In this work we present the results of the analysis of silicon samples by Particle Induced Gamma-Ray Emission (PIGE) aiming the quantification of low concentrations of boron. PIGE analysis was carried out using the in-air external beam line of the Laboratory for Materials Analysis with Ion Beams (LAMFI-USP) by the {sup 10}B(p,αγ({sup 7}Be nuclear reaction, and measuring the 429 keV γ-ray. The in-air PIGE measurements at LAMFI have a quantification limit of the order of 10{sup 16} at/cm{sup 2}.

OSTI ID:
22390461
Journal Information:
AIP Conference Proceedings, Vol. 1625, Issue 1; Conference: 36. Brazilian Workshop on Nuclear Physics, Sao Sebastiao, SP (Brazil), 1-5 Sep 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English