skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A novel adaptive time stepping variant of the Boris–Buneman integrator for the simulation of particle accelerators with space charge

Journal Article · · Journal of Computational Physics
 [1];  [2];  [1];  [2]
  1. ETH Zürich, Computer Science Department, Universitätsstrasse 6, 8092 Zürich (Switzerland)
  2. Paul Scherrer Institute, CH-5234 Villigen (Switzerland)

We show that adaptive time stepping in particle accelerator simulation is an enhancement for certain problems. The new algorithm has been implemented in the OPAL (Object Oriented Parallel Accelerator Library) framework. The idea is to adjust the frequency of costly self-field calculations, which are needed to model Coulomb interaction (space charge) effects. In analogy to a Kepler orbit simulation that requires a higher time step resolution at the close encounter, we propose to choose the time step based on the magnitude of the space charge forces. Inspired by geometric integration techniques, our algorithm chooses the time step proportional to a function of the current phase space state instead of calculating a local error estimate like a conventional adaptive procedure. Building on recent work, a more profound argument is given on how exactly the time step should be chosen. An intermediate algorithm, initially built to allow a clearer analysis by introducing separate time steps for external field and self-field integration, turned out to be useful by its own, for a large class of problems.

OSTI ID:
22382105
Journal Information:
Journal of Computational Physics, Vol. 273; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English