skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prospects for direct detection of dark matter in an effective theory approach

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1]
  1. Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

We perform the first comprehensive analysis of the prospects for direct detection of dark matter with future ton-scale detectors in the general 11-dimensional effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. The theory includes 8 momentum and velocity dependent dark matter-nucleon interaction operators, besides the familiar spin-independent and spin-dependent operators. From a variegated sample of 27 benchmark points selected in the parameter space of the theory, we simulate independent sets of synthetic data for ton-scale Germanium and Xenon detectors. From the synthetic data, we then extract the marginal posterior probability density functions and the profile likelihoods of the model parameters. The associated Bayesian credible regions and frequentist confidence intervals allow us to assess the prospects for direct detection of dark matter at the 27 benchmark points. First, we analyze the data assuming the knowledge of the correct dark matter nucleon-interaction type, as it is commonly done for the familiar spin-independent and spin-dependent interactions. Then, we analyze the simulations extracting the dark matter-nucleon interaction type from the data directly, in contrast to standard analyses. This second approach requires an extensive exploration of the full 11-dimensional parameter space of the dark matter-nucleon effective theory. Interestingly, we identify 5 scenarios where the dark matter mass and the dark matter-nucleon interaction type can be reconstructed from the data simultaneously. We stress the importance of extracting the dark matter nucleon-interaction type from the data directly, discussing the main challenges found addressing this complex 11-dimensional problem.

OSTI ID:
22373431
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2014, Issue 07; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English

Similar Records

Global fits of the dark matter-nucleon effective interactions
Journal Article · Mon Sep 01 00:00:00 EDT 2014 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22373431

How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?
Journal Article · Fri Apr 01 00:00:00 EDT 2011 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22373431

Analysis of the theoretical bias in dark matter direct detection
Journal Article · Mon Sep 01 00:00:00 EDT 2014 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22373431