skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Star formation trends in the unrelaxed, post-merger cluster A2255

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)
  2. Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Room 101, Toronto, Ontario M5S 3H4 (Canada)

The effects of dense environments on normal field galaxies are still up for debate despite much study since Abell published his catalog of nearby clusters in 1958. There are changes in color, morphology, and star formation properties when galaxies fall into groups and clusters, but the specifics of how and where these modifications occur are not fully understood. To look for answers, we focused on star-forming galaxies in A2255, an unrelaxed cluster thought to have recently experienced a merger with another cluster or large group. We used Hα, MIPS 24 μm, and WISE 22 μm to estimate total star formation rates (SFRs) and Sloan Digital Sky Survey photometry to find stellar masses (M {sub *}) for galaxies out to ∼5 r {sub 200}. We compared the star-forming cluster galaxies with the field SFR-mass distribution and found no enhancement or suppression of star formation in currently star-forming galaxies of high mass (log (M {sub *}/M {sub ☉}) ≳ 10). This conclusion holds out to very large distances from the cluster center. However, the core (r {sub proj} < 3 Mpc) has a much lower fraction of star-forming galaxies than anywhere else in the cluster. These results indicate that for the mass range studied here, the majority of the star formation suppression occurs in the core on relatively short timescales, without any enhancement prior to entering the central region. If any significant enhancement or quenching of star formation occurs, it will be in galaxies of lower mass (log (M {sub *}/M {sub ☉}) < 10).

OSTI ID:
22370495
Journal Information:
Astrophysical Journal, Vol. 794, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English