skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Swift X-ray telescope observations of the nova-like cataclysmic variables MV Lyr, BZ Cam, and V592 Cas

Journal Article · · Astrophysical Journal
 [1];
  1. Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

We present a total of ∼45 ks (3 × 15 ks) of Swift X-Ray Telescope (XRT) observations for three nonmagnetic nova-like (NL) cataclysmic variables (CVs; MV Lyr, BZ Cam, V592 Cas) in order to study characteristics of boundary layers (BLs) in CVs. The nonmagnetic NLs are found mostly in a state of high mass accretion rate (≥1 × 10{sup –9} M {sub ☉} yr{sup –1}), and some show occasional low states. Using the XRT data, we find optically thin multiple-temperature cooling flow type emission spectra with X-ray temperatures (kT {sub max}) of 21-50 keV. These hard X-ray-emitting BLs diverge from simple isobaric cooling flows, indicating X-ray temperatures that are of virial values in the disk. In addition, we detect power-law emission components from MV Lyr and BZ Cam and plausibly from V592 Cas, which may be a result of the Compton scattering of the optically thin emission from the fast wind outflows in these systems and/or Compton upscattering of the soft disk photons. The X-ray luminosities of the (multitemperature) thermal plasma emission in the 0.1-50.0 keV range are (0.9-5.0) × 10{sup 32} erg s{sup –1}. The ratio of the X-ray and disk luminosities (calculated from the UV-optical wavelengths) yields an efficiency (L{sub x} /L {sub disk}) ∼ 0.01-0.001. Given this non-radiative ratio for the X-ray-emitting BLs with no significant optically thick blackbody emission in the soft X-rays (consistent with ROSAT observations), together with the high/virial X-ray temperatures, we suggest that high-state NL systems may have optically thin BLs merged with ADAF-like flows and/or X-ray coronae. In addition, we note that the axisymmetric bipolar and/or rotation-dominated fast-wind outflows detected in these three NLs (particularly BZ Cam and V592 Cas) or some other NL may also be explained in the context of ADAF-like BL regions.

OSTI ID:
22370441
Journal Information:
Astrophysical Journal, Vol. 794, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English