skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A classical and a relativistic law of motion for spherical supernovae

Journal Article · · Astrophysical Journal
 [1]
  1. Dipartimento di Fisica, Via Pietro Giuria 1, I-10125 Torino (Italy)

In this paper we derive some first order differential equations which model the classical and the relativistic thin layer approximations. The circumstellar medium is assumed to follow a density profile of the Plummer type, the Lane-Emden (n = 5) type, or a power law. The first order differential equations are solved analytically, numerically, by a series expansion, or by recursion. The initial conditions are chosen in order to model the temporal evolution of SN 1993J over 10 yr and a smaller chi-squared is obtained for the Plummer case with η = 6. The stellar mass ejected by the SN progenitor prior to the explosion, expressed in solar mass, is identified with the total mass associated with the selected density profile and varies from 0.217 to 0.402 when the central number density is 10{sup 7} particles per cubic centimeter. The FWHM of the three density profiles, which can be identified with the size of the pre-SN 1993J envelope, varies from 0.0071 pc to 0.0092 pc.

OSTI ID:
22370267
Journal Information:
Astrophysical Journal, Vol. 795, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English