skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-T-458: Determining Threshold-Of-Failure for Dead Pixel Rows in EPID-Based Dosimetry

Purpose: A pixel correction map is applied to all EPID-based applications on the TrueBeam (Varian Medical Systems, Palo Alto, CA). When dead pixels are detected, an interpolative smoothing algorithm is applied using neighboring-pixel information to supplement missing-pixel information. The vendor suggests that when the number of dead pixels exceeds 70,000, the panel should be replaced. It is common for entire detector rows to be dead, as well as their neighboring rows. Approximately 70 rows can be dead before the panel reaches this threshold. This study determines the number of neighboring dead-pixel rows that would create a large enough deviation in measured fluence to cause failures in portal dosimetry (PD). Methods: Four clinical two-arc VMAT plans were generated using Eclipse's AXB algorithm and PD plans were created using the PDIP algorithm. These plans were chosen to represent those commonly encountered in the clinic: prostate, lung, abdomen, and neck treatments. During each iteration of this study, an increasing number of dead-pixel rows are artificially applied to the correction map and a fluence QA is performed using the EPID (corrected with this map). To provide a worst-case-scenario, the dead-pixel rows are chosen so that they present artifacts in the highfluence region of themore » field. Results: For all eight arc-fields deemed acceptable via a 3%/3mm gamma analysis (pass rate greater than 99%), VMAT QA yielded identical results with a 5 pixel-width dead zone. When 10 dead lines were present, half of the fields had pass rates below the 99% pass rate. With increasing dead rows, the pass rates were reduced substantially. Conclusion: While the vendor still suggests to request service at the point where 70,000 dead rows are measured (as recommended by the vendor), the authors suggest that service should be requested when there are greater than 5 consecutive dead rows.« less
 [1] ;  [2]
  1. Gibbs Cancer Center and Research Institute - Pelham, Greer, SC (United States)
  2. Cone Health Cancer Center, Greensboro, NC (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States