skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-522: A Multi-Isocenter VMAT Technique for Cranio-Spinal Irradiation

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4888855· OSTI ID:22369649
; ; ; ;  [1]
  1. UT MD Anderson Cancer Center, Houston, TX (United States)

Purpose: Develop a matching VMAT field technique and investigate planning feasibility for treating the entire central nervous system (CNS) using Cranio-Spinal Irradiation (CSI) . Methods: Two patients diagnosed with acute myeloid leukemia (AML) presented with CNS involvement, received CSI, and were included in this study. The patients were treated with the traditional CSI technique: prone position, opposing lateral brain fields, two posterior fields (upper and lower spine), and 5mm junction shifts to improve dose uniformity. The patients were retrospectively re-planned using volumetric arc therapy (VMAT). The spine and brain were contoured to create the clinical target volume (CTV) as well as normal tissues including kidneys, lung and heart for optimization. Three isocenters were used for planning: brain, upper and lower spine. The beams were allowed to overlap by approximately 10cm. Entire 360 degree rotations were used for the brain fields and posterior 120 degree arcs were used for the spine fields. The dosimetric coverage of the target between the VMAT and traditional plans was compared, as well as the dose to normal tissues. Results: Both VMAT plans achieved improved dose uniformity in the CTV (standard deviation < 2%), and reduced hot spots (<110%). Dose to the heart was reduced, with the V10 being 12.7% and 28.2%, compared to 44.6% and 50.2%, respectively, for the traditional plan. Dose to the total lung V5 increased for the VMAT plans for both patients (21.6% and 27.8% compared to 12% and 13% respectively). The results for the kidneys were mixed with the mean dose increasing for one patient and decreasing for the other . Conclusion: The efficacy of planning CSI treatments using a matching VMAT technique was demonstrated. The developed technique has the potential to improve dose uniformity to the target while at the same time reduce the risk of under or over dosing the spine.

OSTI ID:
22369649
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English