Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series

The paper deals with the space L{sup p(x)} consisting of classes of real measurable functions f(x) on [0,1] with finite integral ∫{sub 0}{sup 1}|f(x)|{sup p(x)} dx. If 1≤p(x)≤ p-bar <∞, then the space L{sup p(x)} can be made into a Banach space with the norm ∥f∥{sub p(⋅)}=inf(α > 0:∫{sub 0}{sup 1}|f(x)/α|{sup p(x)} dx≤ 1). The inequality ∥f−Q{sub n}(f)∥{sub p(⋅)}≤c(p)Ω(f,1/n){sub p(⋅)}, which is an analogue of the first Jackson theorem, is shown to hold for the finite Fourier-Haar series Q{sub n}(f), provided that the variable exponent p(x) satisfies the condition |p(x)−p(y)|ln (1/|x−y|)≤ c. Here, Ω(f,δ){sub p(⋅)} is the modulus of continuity in L{sup p(x)} defined in terms of Steklov functions. If the function f(x) lies in the Sobolev space W{sub p(⋅)}{sup 1} with variable exponent p(x), it is shown that ∥f−Q{sub n}(f)∥{sub p(⋅)}≤c(p)/n∥f{sup ′}∥{sub p(⋅)}. Methods for estimating the deviation |f(x)−Q{sub n}(f,x)| for f(x)∈W{sub p(⋅)}{sup 1} at a given point x∈[0,1] are also examined. The value of sup{sub f∈W{sub p{sup 1}(1)}}|f(x)−Q{sub n}(f,x)| is calculated in the case when p(x)≡p= const, where W{sub p}{sup 1}(1)=(f∈W{sub p}{sup 1}:∥f{sup ′}∥{sub p(⋅)}≤1). Bibliography: 17 titles.
Authors:
[1]
1. Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala (Russian Federation)
Publication Date:
OSTI Identifier:
22365661
Resource Type:
Journal Article
Resource Relation:
Journal Name: Sbornik. Mathematics; Journal Volume: 205; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; APPROXIMATIONS; BANACH SPACE; INTEGRALS; MATHEMATICAL OPERATORS; MATHEMATICAL SOLUTIONS; MATHEMATICAL SPACE