skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HIGH PRECISION ABUNDANCES IN THE 16 Cyg BINARY SYSTEM: A SIGNATURE OF THE ROCKY CORE IN THE GIANT PLANET

Journal Article · · Astrophysical Journal Letters
;  [1];  [2]
  1. Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP (Brazil)
  2. McDonald Observatory and Department of Astronomy, University of Texas at Austin, TX (United States)

We study the stars of the binary system 16 Cygni to determine with high precision their chemical composition. Knowing that the component B has a detected planet of at least 1.5 Jupiter masses, we investigate if there are chemical peculiarities that could be attributed to planet formation around this star. We perform a differential abundance analysis using high resolution (R = 81,000) and high S/N (∼700) CFHT/ESPaDOnS spectra of the 16 Cygni stars and the Sun; the latter was obtained from light reflected of asteroids. We determine differential abundances of the binary components relative to the Sun and between components A and B as well. We achieve a precision of σ ≲ 0.005 dex and a total error ∼0.01 dex for most elements. The effective temperatures and surface gravities found for 16 Cyg A and B are T {sub eff} = 5830 ± 7 K, log g = 4.30 ± 0.02 dex, and T {sub eff} = 5751 ± 6 K, log g = 4.35 ± 0.02 dex, respectively. The component 16 Cyg A has a metallicity ([Fe/H]) higher by 0.047 ± 0.005 dex than 16 Cyg B, as well as a microturbulence velocity higher by 0.08 km s{sup –1}. All elements show abundance differences between the binary components, but while the volatile difference is about 0.03 dex, the refractories differ by more and show a trend with condensation temperature, which could be interpreted as the signature of the rocky accretion core of the giant planet 16 Cyg Bb. We estimate a mass of about 1.5-6 M {sub ⊕} for this rocky core, in good agreement with estimates of Jupiter's core.

OSTI ID:
22365471
Journal Information:
Astrophysical Journal Letters, Vol. 790, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English