skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PROSPECTS FOR JOINT GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS OF NEUTRON-STAR-BLACK-HOLE COALESCING BINARIES

Journal Article · · Astrophysical Journal Letters
;  [1]
  1. School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom)

Coalescing neutron-star-black-hole (NS-BH) binaries are a promising source of gravitational-wave (GW) signals detectable with large-scale laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory and Virgo. They are also one of the main short gamma-ray burst (SGRB) progenitor candidates. If the black hole (BH) tidally disrupts its companion, an SGRB may be ignited when a sufficiently massive accretion disk forms around the remnant BH. Detecting an NS-BH coalescence both in the GW and electromagnetic (EM) spectrum offers a wealth of information about the nature of the source. How much can actually be inferred from a joint detection is unclear, however, as a mass/spin degeneracy may reduce the GW measurement accuracy. To shed light on this problem and on the potential of joint EM+GW observations, we here combine recent semi-analytical predictions for the remnant disk mass with estimates of the parameter-space portion that is selected by a GW detection. We identify cases in which an SGRB ignition is supported, others in which it can be excluded, and finally others in which the outcome depends on the chosen model for the currently unknown NS equation of state. We pinpoint a range of systems that would allow us to place lower bounds on the equation of state stiffness if both the GW emission and its EM counterpart are observed. The methods we develop can broaden the scope of existing GW detection and parameter-estimation algorithms and could allow us to disregard about half of the templates in an NS-BH search following an SGRB trigger, increasing its speed and sensitivity.

OSTI ID:
22365405
Journal Information:
Astrophysical Journal Letters, Vol. 791, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English