skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The origin of the X-ray emission from the high-velocity cloud MS30.7–81.4–118

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)
  2. School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

A soft X-ray enhancement has recently been reported toward the high-velocity cloud MS30.7–81.4–118 (MS30.7), a constituent of the Magellanic Stream. In order to investigate the origin of this enhancement, we have analyzed two overlapping XMM-Newton observations of this cloud. We find that the X-ray enhancement is ∼6' or ∼100 pc across, and is concentrated to the north and west of the densest part of the cloud. We modeled the X-ray enhancement with a variety of spectral models. A single-temperature equilibrium plasma model yields a temperature of (3.69{sub −0.44}{sup +0.47})×10{sup 6} K and a 0.4-2.0 keV luminosity of 7.9 × 10{sup 33} erg s{sup –1}. However, this model underpredicts the on-enhancement emission around 1 keV, which may indicate the additional presence of hotter plasma (T ≳ 10{sup 7} K), or that recombination emission is important. We examined several different physical models for the origin of the X-ray enhancement. We find that turbulent mixing of cold cloud material with hot ambient material, compression or shock heating of a hot ambient medium, and charge exchange reactions between cloud atoms and ions in a hot ambient medium all lead to emission that is too faint. In addition, shock heating in a cool or warm medium leads to emission that is too soft (for reasonable cloud speeds). We find that magnetic reconnection could plausibly power the observed X-ray emission, but resistive magnetohydrodynamical simulations are needed to test this hypothesis. If magnetic reconnection is responsible for the X-ray enhancement, the observed spectral properties could potentially constrain the magnetic field in the vicinity of the Magellanic Stream.

OSTI ID:
22365388
Journal Information:
Astrophysical Journal, Vol. 791, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English