skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GRB 130427A AND SN 2013cq: A MULTI-WAVELENGTH ANALYSIS OF AN INDUCED GRAVITATIONAL COLLAPSE EVENT

Journal Article · · Astrophysical Journal
; ; ; ; ; ; ;  [1]
  1. Dip. di Fisica and ICRA, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome (Italy)

We performed a data analysis of the observations by the Swift, NuStar, and Fermi satellites in order to probe the induced gravitational collapse (IGC) paradigm for gamma-ray bursts (GRBs) associated with supernovae (SNe) in the terra incognita of GRB 130427A. We compare our data analysis with those in the literature. We have verified that GRB 130427A conforms to the IGC paradigm by examining the power law behavior of the luminosity in the early 10{sup 4} s of the XRT observations. This has led to the identification of the four different episodes of the binary driven hypernovae (BdHNe) and to the prediction, on 2013 May 2, of the occurrence of SN 2013cq, which was also observed in the optical band on 2013 May 13. The exceptional quality of the data has allowed the identification of novel features in Episode 3 including: (1) the confirmation and the extension of the existence of the recently discovered nested structure in the late X-ray luminosity in GRB 130427A, as well as the identification of a spiky structure at 10{sup 2} s in the cosmological rest-frame of the source; (2) a power law emission of the GeV luminosity light curve and its onset at the end of Episode 2; and (3) different Lorentz Γ factors for the emitting regions of the X-ray and GeV emissions in this Episode 3. These results make it possible to test the details of the physical and astrophysical regimes at work in the BdHNe: (1) a newly born neutron star and the supernova ejecta, originating in Episode 1; (2) a newly formed black hole originating in Episode 2; and (3) the possible interaction among these components, observable in the standard features of Episode 3.

OSTI ID:
22364773
Journal Information:
Astrophysical Journal, Vol. 798, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English