skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS

Journal Article · · Astrophysical Journal Letters
; ;  [1];  [2];  [3]
  1. Department of Physics and Astronomy, University of Exeter, Physics Building, Stocker Road, Exeter, EX4 4QL (United Kingdom)
  2. Laboratoire AIM Paris-Saclay, CEA/Irfu Université Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France)
  3. Université de Grenoble Alpes, IPAG, F-38000 Grenoble (France)

To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the ''upper envelope'' of the distribution, suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape of the ''lower envelope'', corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.

OSTI ID:
22364356
Journal Information:
Astrophysical Journal Letters, Vol. 799, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English

Similar Records

Further Evidence of Modified Spin-down in Sun-like Stars: Pileups in the Temperature–Period Distribution
Journal Article · Thu Jul 07 00:00:00 EDT 2022 · The Astrophysical Journal · OSTI ID:22364356

The p-mode oscillation spectra of an evolving 1-solar-mass sun-like star
Journal Article · Mon Jul 01 00:00:00 EDT 1991 · Astrophysical Journal; (United States) · OSTI ID:22364356

THE FUTURE OF THE SUN: AN EVOLVED SOLAR TWIN REVEALED BY CoRoT
Journal Article · Wed Jul 10 00:00:00 EDT 2013 · Astrophysical Journal Letters · OSTI ID:22364356